A Closer Look at Accuracy
vs. Robustness
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Notations

Sample x € X c R¢ with ground truth y.

A model f: X - R¢ predicts the probability of x in C classes.
[C1={12..,C}

f(x); is the i-th element of the vector f(x).

dist is a metric (distance function). 05 -
B(x, €) is a ball of radius € > 0 around x in the metric space dist.

B, denotes a £, ball.
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Definitions

Robustness: (prediction is unchanged)
A classifier is robust at x with radius € > 0 if for all x" € B(x, €), f(x") = f(x)

Astuteness: (prediction is correct)
A classifier is astute at (x, y) if for all x" € B(x,€), f(x") =y

The astuteness (of f at radius € > 0 under a distribution p):

Pr [g(x') =y forallx’ € B(x,e)]
(X y)~u

The goal of robust classification is to find f with highest astuteness (robust accuracy).
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Definitions

Local Lipschitzness:
f is L-locally Lipschitz at radius r if for each i € [C], we have
|f(x); — f(x");| < L-dist(x,x"), Vx' with dist(x,x") <r

Separation:
X contain C disjoint classes X, ..., X where all points in X® have label i € [C].

r-separation:
dist(XD,x D) > 2r, foralli # j

where dist(X®,x0)) = min  dist(x,x")
xexX D x'ex )
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Are real image datasets r-separation?

Experiments on four datasets: MNIST, CIFAR-10, SVHN, ResimageNet.

Train-Train: ¢, distance between the training sample and its closest neighbor with different label in
the training set.

Test-Train: ¢, distance between the test sample and its closest neighbor with different label in the

traini ng set. Lo MNIST Test-Train (£,) o SVHN Test-Train (£..)
2 min: 0.81 E min: 0.11
e: the typical adversarial attack radius for the datasets. % 5| 2-02 3 ggPeboe
[Baring a handful of highly noisy examples.] 50, g0
00 0.0 0.2 0.4 0.6 0.8 1.0 *00 0.0 0.2 0.4 0.6 0.8 1.0
Distance (£x) Distance ({o)
adversarial minimum  minimum (a) MNIST (b) SVHN
perturbatlon Traln'TI: am TeSt'Tr_am o CIFAR-10 Test-Train (£s,) Lo, Restricted ImageNet Test-Train ((oc)
€ separation  separation % 0s min: 0.22 %0 min: 0.22
< .6 20062 < 0o 2001
MNIST 0.1 0.737 0.812 ®o %
CIFAR-10 0.031 0.212 0.220 g, 8o
SVHN 0.031 0.094 0.110 B _‘ o
ResImageNet 0.005 0.180 0.224 W3 ey 1 S (N
(c) CIFAR-10 (d) Restricted ImageNet
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When the dataset is r-separation...

It is possible to find both robust and accurate model for r-separated data.
Consider function f: X —» R¢ and x € X with true label y € [C], if

.  f is% -Locally Lipschitz in radius r around x, and

1. f)j—fx), =2forallj+y
Then g(x) = argmin f(x); is astute at x with radius r.
l

Intuitively,
Condition-I indicates that the changes of prediction in B(x,r) are slow.
Condition-Il indicates that the function has relatively high “confidence” for x’s ground truth.
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When the dataset is r-separation...

For a r-separated dataset. Consider the function

.  f is% -Locally Lipschitz in radius r around x, and

1. f);—fx)y, =2forallj +y.
Then g(x) = argmin f(x); is astute at x with radius r.
l

Proof:
1 1
|f(x)j — f(x’)j| < = dist(x,x") < —Tr= 1, Vx' with dist(x,x") <r
fOD;z2f);—1=2f)y +1=fx),y
Thus, for all j # y: argmin f(x"); = argmin f(x); =y
l l

When the distribution is r-separated, there exists an astute classifier g(x) = argmin f(x); classifies x
l
correctly and is astute with radius r.
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When X is r-separated, denoting C classes X, ..., X(©_ There exists a function f such that:
l. f is% -locally Lipschitz in a ball of radius r around each x €U, X, and

[l. the classifier g(x) = argmin f(x); has astuteness 1 with radius r.
l

Intuitively,

Condition-I indicates that f doesn’t change a lot near each data x.
Condition-lII means that the classifier based on f is astute.
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When the dataset is r-separation...

When X is r-separated, denoting C classes X, ..., X(©_ There exists a function f such that:
l. f is% -locally Lipschitz in a ball of radius r around each x €U, X, and

[l. the classifier g(x) = argmin f(x); has astuteness 1 with radius r.
l

Proof:

Consider a vector-valued function f(x): X - R¢ and dist(x, X®) = m}gl?.) dist(x, z)
zex

f(x) = % (dist(x,x(l)), ...,dist(x,X(C)))
Then for any x, we have

dist(x, XD) — dist(x', X ®) _ dist(x,x")

r r

f(x)i - f(x')i =
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When the dataset is r-separation...

When X is r-separated, denoting C classes X, ..., X(©_ There exists a function f such that:
l. f is% -locally Lipschitz in a ball of radius r around each x €U, X, and

[l. the classifier g(x) = argmin f(x); has astuteness 1 with radius r.
l

Proof: as for condition-Il, we proof “vx € X, f(x); — f(x), = 2 for all j # y” instead.
Since x € X, fx)y, = dist(x,X(Y)) =0

dist(x,x(j)) - dist(x(y),x(j)) - 27

r r r

@)= )y = =2

1
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When the dataset is r-separation...

An example to show robust model with small Lipschitzness (orange curve), and vulnerable model to
adversarial attacks (black curve).
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Experiments

Explore two questions (why existing works trade robustness off for accuracy):
* How locally Lipschitz are the classifiers produced by existing training methods?
* How well do classifiers produced by existing training methods generalize?

Training methods:

* Natural training (Natural);

* Gradient Regularization (GR);

* Locally Linear Regularization (LLR);

* Adversarial Training (AT);

* TRADES [Higher f means higher weight given to enforcing local Lipschitzness];

* Robust Self Training (RST) [Higher 4 in RST means higher weight is given to robust accuracy].

Adversarial attacks: PGD

13
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Experiments

* How locally Lipschitz are the classifiers produced by existing training methods?
[CNN1: smaller network, CNN2: larger network in MNIST dataset.]

“test Lipschitz” is quantified by
n !
12 |f (i) — fF(x)q
— max
n xi’E[Bﬂoo(xi,e) |xl- — Xl'|oo

and is evaluated by a PGD-like procedure (take steps towards the gradient in multiple steps.)

architecture CNN1 || CNN2

train | test adv test test adv || train | test adv test test adv

. . gap . . gap

acc. | acc. acc. lipschitz gap || acc. | acc. acc. lipschitz gap
Natural 100.00 | 99.20 59.83 67.25 0.80 045 || 100.00 | 99.51 86.01 23.06 049 -0.28
GR 99.99 | 99.29 91.03 26.05 070 349 || 99.99 | 99.55 9371 20.26 044 255
LLR 100.00 | 99.43 92.14 30.44 057 442 || 100.00 | 99.57 95.13 975 043 228
AT 99.98 | 99.31 97.21 8.84 067 267 || 99.98 | 99.48 98.03 6.09 050 1.92
RST(\=.5) 100.00 | 99.34 96.53 11.09 0.66 3.16 || 100.00 | 99.53 97.72 8.27 047 227
RST(\=1) 100.00 | 99.31 96.96 11.31 069 295 || 100.00 | 99.55 98.27 6.26 045 173
RST(A=2) 100.00 | 99.31 97.09 12.39 069 287 || 100.00 | 99.56 98.48 455 044 152
TRADES(B=1) 99.81 | 99.26 96.60 9.69 055 210 || 99.96 | 99.58 98.10 474 038 170
TRADES(8=3) 9921 | 98.96 96.66 7.83 025 133 || 99.80 | 99.57 98.54 2.14 023 118 1
TRADES(8=6) 97.50 | 97.54 93.68 2.87 2004 037 || 99.61 | 99.59 98.73 1.36 0.02 0.80
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Experiments

* How locally Lipschitz are the classifiers produced by existing training methods?

Models trained by Natural, GR, LLR have significantly worse Lipschitzness than others.
Models trained by TRADE are the most locally Lipschitz overall.

Local Lipschitzness is correlated with adversarial attacks.

swn =~

There are diminishing returns in the correlation between robustness and local Lipschitzness.

architecture CNN1 [l CNN2 | CIFAR-10 || Restricted ImageNet
train | test adv test test train | test adv test test train | test adv test test train | test adv test test
acc. | acc. acc. lipschitz| acc. | acc. acc. lipschitz acc. | acc. acc. lipschitz || acc. | acc. acc. lipschitz
Natural 100.00 | 99.20 59.83 67.25 100.00 | 99.51 86.01 23.06 Natural 100.00 | 93.81 0.00 425.71 97.72 | 9347 7.89 32228.51
GR 99.99 | 99.29 91.03 26.05 99.99 | 99.55 9371 20.26 GR 94.90 | 80.74 21.32 28.53 91.12 | 88.51 62.14 886.75
LLR 100.00 | 99.43 92.14 30.44 100.00 | 99.57 95.13 975 LLR 100.00 | 91.44 22.05 94.68 98.76 | 93.44 52.62 4795.66
AT 99.98 | 99.31 97.21 .84 99.98 | 99.48 98.03 6.09 RST(\=.5) 99.90 | 85.11 39.58 20.67 96.08 | 92.02 79.24 451.57
RST(\=.5) 100.00 | 99.34 96.53 11.09 100.00 | 99.53 9772 8.27 RST(A=1) 99.86 84.61 40.89 23.15 95.66 92.06 79.69 35543
RST(A=1) 100.00 | 99.31 96.96 11.31 100.00 | 99.55 98.27 6.26 RST(A=2) 99.73 83.87 41.75 23.80 96.02 | 91.14 81.41 394.40
RST(\=2) 100.00 | 99.31 97.09 12.39 100.00 | 99.56 98.48 4.55 AT 99.84 | 83.51 4351 26.23 96.22 | 90.33 82.25 287.97
TRADES(B=1) 99.81 99.26 96.60 9.69 9996 | 99.58 98.10 474 TRADES(8=1) | 99.76 84.96 43.66 28.01 97.39 | 92.27 79.90 2144.66
TRADES(8=3) 99.21 | 98.96 96.66 7.83 9980 | 99.57 98.54 214 TRADES(B8=3) | 99.78 | 85.55 46.63 2242 95.74 | 90.75 82.28 396.67
TRADES(8=6) 97.50 | 97.54 93.68 2.87 99.61 | 99.59 98.73 1.36 TRADES(3=6) | 98.93 | 84.46 48.58 13.05 93.34 | 88.92 82.13 200.90
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1.

How well do classifiers produced by existing training methods generalize?
Locally Lipschitz classifiers, AT, TRADES and RST, also have large generalization gaps.

RST has better test accuracy than AT, it continues to have a large generalization gap. This
generalization behavior is unlike linear classification, where imposing local Lipschitzness leads to
higher margin and better generalization.

Imposing local Lipschitzness in these methods, appears to hurt generalization instead of helping.
This suggests that these robust training methods may not be generalizing properly.

architecture CNN1 I CNN2 | CIFAR-10 [| Restricted ImageNet

train | test adv test adv || train | test adv test adv train | test adv test . adv || train | test adv test ga adv

4

acc. |acc. acc. | *® gap|| acc. [acc. acc. | *¥* gap acc. |acc. acc. | &% gap || acc. | acc.  acc. P gap
Natural 100.00 | 99.20 59.83 0.80 045 100.00 | 99.51 86.01 049 -0.28 Natural 100.00 | 93.81 0.00 6.19 0.00 97.72 | 9347 7.89 425 -0.46
GR 9999 | 9929 9103 | 070 349 || 9999 | 9955 9371 | 044 255 GR 9490 | 8074 2132 | 1416 394 || 9L12 | 8851 6214 261 0.19
LLR 100.00 | 99.43 92.14 057 442 100.00 | 99.57 95.13 043 228 LLR 100.00 | 91.44 22.05 8.56 4.50 98.76 | 93.44 52.62 532 022
AT 99.98 | 99.31 97.21 0.67 267 99.98 | 99.48 98.03 050 1.92 RST(A=.5) 99.90 | 85.11 39.58 1479  36.26 96.08 | 92.02 79.24 406 4.57
RST(A=.5) 100.00 | 99.34 96.53 0.66 3.16 100.00 | 99.53 97.72 047 227 RST(A=1) 99.86 84.61 40.89 1525 4131 95.66 | 92.06 79.69 3.61 4.67
RST(A=1) 10000 | 9931 9696 | 069 295 || 100.00 | 9955 9827 | 045 173 RST(A=2) 9973 | 8387 4175 | 1586 4354 || 9602 | 9114 8141 487 619
RST(A=2) 100.00 | 99.31 97.09 0.69 287 100.00 | 99.56 98.48 044 152 AT 99.84 83.51 43.51 16.33  49.94 96.22 | 90.33 82.25 5.90 8.23
TRADES(B=1) 9981 | 9926  96.60 | 055 2.10 || 9996 | 9958 9810 | 038 170 TRADES(B=1) | 99.76 | 8496  43.66 | 1480 44.60 || 9739 | 9227  79.90 513 6.66
TRADES(8=3)  99.21 | 98.96 96.66 025 133 || 99.80 | 99.57 98.54 023 118 TRADES(3=3) | 99.78 | 85.55 46.63 1423 4767 95.74 | 90.75 82.28 500 641
TRADES(8=6) 9750 | 97.54  93.68 | -004 037 || 99.61 | 9959 9873 | 0.02 0.80 TRADES(B=6) | 9893 | 8446 4858 | 1447 4265 || 9334 | 8892 8213 442 531
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* Can we improve the generalization gap of these models?

1. Dropout helps to narrow the generalization gap between training and test acc.

2. Dropout makes the model smoother (smaller Lipschitzness).

3. Combining dropout with the robust methods may be a good strategy for generalization.

| SVHN I CIFAR-10

dropout test adv test test a adv || test adv test test a adv

P acc. | lipschitz gap gap acc. | lipschitz gap gap

Natural False 95.85 2.66 149.82 415 087 || 93.81 0.00 425.71 6.19 0.0
Natural True 96.66 1.52 152.38 334 122 || 9387 0.00 384.48 6.13 0.0
AT False 91.68  54.17 16.51 511 2574 || 8351 4351 26.23 1633 49.94
AT True 9305  57.90 11.68 014 648 || 8520  43.07 31.59 1451 4405
RST(A=2) False 9239 5139 23.17 6 86 36.02 || 83.87 4175 23.80 1586 43.54
RST(A=2) True 95.19 5522 17.59 1130 || 8549 4024 34.45 14.00 33.07
TRADES(8=3)  False 91.85 5437 10.15 748 3333 || 8555  46.63 22.42 1423 47.67
TRADES(8=3) True 9400  62.41 4.99 048 791 || 8643  49.01 14.69 1259  35.03
TRADES(8=6)  False 91.83  58.12 5.20 535 2388 || 8446  48.58 13.05 1447 42,65
TRADES(8=6) True 9346 6324 3.30 045 597 || 8469 5232 8.13 1191 2649
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[ ) . - 1 " ju— Vf(x)
Gradient Regularization (GR): (d = |vf(x)|2)

minE{L(f(X),¥) + B|VxL((X), V)] }.

* Locally-Linear Regularization model (LLR):

9(£,6,X) = |L(f(X+9),Y) - L(f(X),Y) — §" VxL(f(X),Y))
Define v(g, X) = IE{ maxsep(x,e) 9(f5 9, X)} and also 6,1, r = IE{ argmax;sc g(x ¢) 9(f5 6, X) }.
The loss function for Locally-Linear Regularization (LLR) model is

E{L(f(X),Y) + (e, X) + ulldTLrVXL(F(X), V)| }
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* Adversarial training (AT):

. /
m}nE{ x’gg&,s) E£(X), Y)}

* Robust self-training (RST):

m}nIE{[:( f(X),Y) + 6 max LX) Y)}.

* Locally-Lipschitz models (TRADES):

minE{ £(f(X),Y) + B max L(f(X), f(X)},

19
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