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Notations

Sample 𝑥 ∈ 𝒳 ⊂ ℝ! with ground truth 𝑦.
A model 𝑓:𝒳 → ℝ" predicts the probability of 𝑥 in 𝐶 classes.
𝐶 = 1,2, … , 𝐶
𝑓 𝑥 # is the 𝑖-th element of the vector 𝑓 𝑥 .

𝑑𝑖𝑠𝑡 is a metric (distance function).
𝔹 𝑥, 𝜖 is a ball of radius 𝜖 > 0 around 𝑥 in the metric space 𝑑𝑖𝑠𝑡.
𝔹$ denotes a ℓ$ ball.
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Definitions

Robustness: (prediction is unchanged)
A classifier is robust at 𝑥 with radius 𝜖 > 0 if for all 𝑥% ∈ 𝔹 𝑥, 𝜖 , 𝑓 𝑥% = 𝑓 𝑥

Astuteness: (prediction is correct)
A classifier is astute at (𝑥, 𝑦) if for all 𝑥% ∈ 𝔹 𝑥, 𝜖 , 𝑓 𝑥% = 𝑦

The astuteness (of 𝑓 at radius 𝜖 > 0 under a distribution 𝜇):
Pr

&,( ∼*
𝑔 𝑥% = 𝑦 for all 𝑥% ∈ 𝔹 𝑥, 𝜖

The goal of robust classification is to find 𝑓 with highest astuteness (robust accuracy).
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Definitions

Local Lipschitzness:
𝑓 is 𝐿-locally Lipschitz at radius 𝑟 if for each 𝑖 ∈ 𝐶 , we have

𝑓 𝑥 # − 𝑓 𝑥% # ≤ 𝐿 ⋅ 𝑑𝑖𝑠𝑡 𝑥, 𝑥% , ∀𝑥% with 𝑑𝑖𝑠𝑡 𝑥, 𝑥% ≤ 𝑟

Separation:

𝒳 contain 𝐶 disjoint classes 𝒳 + , … ,𝒳 " , where all points in 𝒳 # have label 𝑖 ∈ 𝐶 .

𝑟-separation:

𝑑𝑖𝑠𝑡 𝒳 # , 𝒳 , ≥ 2𝑟, for all 𝑖 ≠ 𝑗

where 𝑑𝑖𝑠𝑡 𝒳 # , 𝒳 , = min
&∈𝒳 ! ,&"∈𝒳 #

𝑑𝑖𝑠𝑡 𝑥, 𝑥%
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Are real image datasets r-separation?

Experiments on four datasets: MNIST, CIFAR-10, SVHN, ResImageNet.
Train-Train: ℓ$ distance between the training sample and its closest neighbor with different label in 
the training set.
Test-Train: ℓ$ distance between the test sample and its closest neighbor with different label in the 
training set.
𝜖: the typical adversarial attack radius for the datasets.
[Baring a handful of highly noisy examples.]
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When the dataset is r-separation…

It is possible to find both robust and accurate model for 𝑟-separated data.
Consider function 𝑓:𝒳 → ℝ" and 𝑥 ∈ 𝒳 with true label 𝑦 ∈ 𝐶 , if 

I. 𝑓 is +
/

-Locally Lipschitz in radius 𝑟 around 𝑥, and

II. 𝑓 𝑥 , − 𝑓 𝑥 ( ≥ 2 for all 𝑗 ≠ 𝑦

Then 𝑔 𝑥 = argmin
#
𝑓 𝑥 # is astute at 𝑥 with radius 𝑟.

Intuitively,
Condition-I indicates that the changes of prediction in 𝔹 𝑥, 𝑟 are slow.
Condition-II indicates that the function has relatively high “confidence” for 𝑥’s ground truth.
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When the dataset is r-separation…

For a 𝑟-separated dataset. Consider the function 

I. 𝑓 is +
/

-Locally Lipschitz in radius 𝑟 around 𝑥, and 

II. 𝑓 𝑥 , − 𝑓 𝑥 ( ≥ 2 for all 𝑗 ≠ 𝑦.

Then  𝑔 𝑥 = argmin
#
𝑓 𝑥 # is astute at 𝑥 with radius 𝑟.

Proof:

𝑓 𝑥 , − 𝑓 𝑥% , ≤
1
𝑟
⋅ 𝑑𝑖𝑠𝑡 𝑥, 𝑥% ≤

1
𝑟
⋅ 𝑟 = 1, ∀𝑥% with 𝑑𝑖𝑠𝑡 𝑥, 𝑥% ≤ 𝑟

𝑓 𝑥% , ≥ 𝑓 𝑥 , − 1 ≥ 𝑓 𝑥 ( + 1 ≥ 𝑓 𝑥% (

Thus, for all 𝑗 ≠ 𝑦: argmin
#
𝑓 𝑥% # = argmin

#
𝑓 𝑥 # = 𝑦.

When the distribution is 𝑟-separated, there exists an astute classifier 𝑔 𝑥 = argmin
#
𝑓 𝑥 # classifies 𝑥

correctly and is astute with radius 𝑟.
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When the dataset is r-separation…

When 𝒳 is 𝑟-separated, denoting 𝐶 classes 𝒳 + , … ,𝒳 " . There exists a function 𝑓 such that:

I. 𝑓 is +
/

-locally Lipschitz in a ball of radius 𝑟 around each 𝑥 ∈∪#∈ " 𝒳, and 

II. the classifier 𝑔 𝑥 = argmin
#
𝑓 𝑥 # has astuteness 1 with radius 𝑟.

Intuitively, 
Condition-I indicates that 𝑓 doesn’t change a lot near each data 𝑥.
Condition-II means that the classifier based on 𝑓 is astute.
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When the dataset is r-separation…

When 𝒳 is 𝑟-separated, denoting 𝐶 classes 𝒳 + , … ,𝒳 " . There exists a function 𝑓 such that:

I. 𝑓 is +
/

-locally Lipschitz in a ball of radius 𝑟 around each 𝑥 ∈∪#∈ " 𝒳, and 

II. the classifier 𝑔 𝑥 = argmin
#
𝑓 𝑥 # has astuteness 1 with radius 𝑟.

Proof:

Consider a vector-valued function 𝑓 𝑥 :𝒳 → ℝ" and 𝑑𝑖𝑠𝑡 𝑥,𝒳 # = min
0∈𝒳(!)

𝑑𝑖𝑠𝑡 𝑥, 𝑧

𝑓 𝑥 =
1
𝑟
⋅ 𝑑𝑖𝑠𝑡 𝑥,𝒳 + , … , 𝑑𝑖𝑠𝑡 𝑥,𝒳 "

Then for any 𝑥, we have 

𝑓 𝑥 # − 𝑓 𝑥% # =
𝑑𝑖𝑠𝑡 𝑥,𝒳 # − 𝑑𝑖𝑠𝑡 𝑥%, 𝒳 #

𝑟
≤
𝑑𝑖𝑠𝑡 𝑥, 𝑥%

𝑟
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When the dataset is r-separation…

When 𝒳 is 𝑟-separated, denoting 𝐶 classes 𝒳 + , … ,𝒳 " . There exists a function 𝑓 such that:

I. 𝑓 is +
/

-locally Lipschitz in a ball of radius 𝑟 around each 𝑥 ∈∪#∈ " 𝒳, and 

II. the classifier 𝑔 𝑥 = argmin
#
𝑓 𝑥 # has astuteness 1 with radius 𝑟.

Proof: as for condition-II, we proof “∀𝑥 ∈ 𝒳 ( , 𝑓 𝑥 , − 𝑓 𝑥 ( ≥ 2 for all 𝑗 ≠ 𝑦” instead.

Since 𝑥 ∈ 𝒳 ( , 𝑓 𝑥 ( = 𝑑𝑖𝑠𝑡 𝑥,𝒳 ( = 0

𝑓 𝑥 , − 𝑓 𝑥 ( =
𝑑𝑖𝑠𝑡 𝑥,𝒳 ,

𝑟
≥
𝑑𝑖𝑠𝑡 𝒳 ( , 𝒳 ,

𝑟
≥
2𝑟
𝑟
= 2
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When the dataset is r-separation…

An example to show robust model with small Lipschitzness (orange curve), and vulnerable model to 
adversarial attacks (black curve).
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Experiments

Explore two questions (why existing works trade robustness off for accuracy):
• How locally Lipschitz are the classifiers produced by existing training methods?
• How well do classifiers produced by existing training methods generalize?

Training methods:
• Natural training (Natural);  
• Gradient Regularization (GR); 
• Locally Linear Regularization (LLR); 
• Adversarial Training (AT); 
• TRADES [Higher 𝛽 means higher weight given to enforcing local Lipschitzness]; 
• Robust Self Training (RST) [Higher 𝜆 in RST means higher weight is given to robust accuracy].

Adversarial attacks: PGD
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Experiments

• How locally Lipschitz are the classifiers produced by existing training methods?
[CNN1: smaller network, CNN2: larger network in MNIST dataset.]
“test Lipschitz” is quantified by

1
𝑛
Y
#1+

2

max
&!
"∈𝔹& &!,4

𝑓 𝑥# − 𝑓 𝑥#% +

𝑥# − 𝑥#% $
and is evaluated by a PGD-like procedure (take steps towards the gradient in multiple steps.)
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Experiments

• How locally Lipschitz are the classifiers produced by existing training methods?
1. Models trained by Natural, GR, LLR have significantly worse Lipschitzness than others.
2. Models trained by TRADE are the most locally Lipschitz overall.
3. Local Lipschitzness is correlated with adversarial attacks.
4. There are diminishing returns in the correlation between robustness and local Lipschitzness.
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Experiments

• How well do classifiers produced by existing training methods generalize?
1. Locally Lipschitz classifiers, AT, TRADES and RST, also have large generalization gaps. 
2. RST has better test accuracy than AT, it continues to have a large generalization gap. This 

generalization behavior is unlike linear classification, where imposing local Lipschitzness leads to 
higher margin and better generalization.

3. Imposing local Lipschitzness in these methods, appears to hurt generalization instead of helping. 
This suggests that these robust training methods may not be generalizing properly.
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Experiments

• Can we improve the generalization gap of these models?
1. Dropout helps to narrow the generalization gap between training and test acc.
2. Dropout makes the model smoother (smaller Lipschitzness).
3. Combining dropout with the robust methods may be a good strategy for generalization.
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Experiments – Robust models

• Gradient Regularization (GR): (𝑑 = ∇6 &
| |∇6 & '

)

• Locally-Linear Regularization model (LLR): 
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Experiments – Robust models

• Adversarial training (AT):

• Robust self-training (RST): 

• Locally-Lipschitz models (TRADES):



Thank you


